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Infraseismic and subseismic deformation transients have been observed by

seismic and geodetic instruments. The constitutive equations and dynamics

that govern the distribution of these unusual events are not well understood,

and the relationships between slow deformation and fast seismic ruptures are

obscure. The goal of the research reported here is to assess the utility of

space-geodetic data in elucidating infraseismic and subseismic phenomena.

Specific objectives of this project include the use of existing seismological,

geodetic, and other data to characterize the distribution of infraseismic and

subseismic transients and the development of strategies for space-geodetic

monitoring of infraseismic and subseismic transients along major plate
boundaries. This research contributes to NASA's program in solid-earth

dynamics by helping to elucidate the temporal and spatial scales for

deformation transients that might be observed by space-geodetic methods. It

has the potential to yield new insights into the dynamics of large earthquakes,

and it may help to elucidate the general issue of earthquake predictability.

In previous years our group has identified slow and quiet earthquakes by

measuring low-frequency spectrum of the seismic source using a variety of

traveling and standing wave techniques. Substantial progress has been made

towards cataloging the occurrences slow earthquakes and slow-precursor

earthquakes. This progress is documented in the following publications:

Jordan, T. H., Far-field detection of stow precursors to fast seismic ruptures, Geophys.

Res. Lett., 18, 2019-2022, 1991.

Ihml6, P.F., P. Harabaglia, and T. H. Jordan, Teleseismic detection of a slow precursor to

the great 1989 Macquarie Ridge earthquake, Science, 261, 177-183, 1993.

Ihmld, P.F., and T. H. Jordan, Teleseismic search for slow precursors to large earthquakes,

Science, 266, 1547-1551, 1994.

lhml6, P. F., and T. H. Jordan, Source time function of the great 1994 Bolivia deep

earthquake by waveform and spectral inversion, Geophys. Res. Lett., 22, 2253-2256, 1995.

Since January, 1996, we have focused on observing slow precusors to large

earthquakes in the time domain. This is an important observational task both

for establishing the existence of slow precursors and for characterizing the

signals that might be measurable geodetically before the onset of the fast

rupture during such an event. The detection of slow precursors as time

domain signals at tcleseismic distances is difficult because ambient level of

seismic noise rises rapidly at frequencies below about 3 mHz. We have

detected such signals for the March 14th, 1994 Romanche Transform

earthquake (Mw 7.0). On broadband tclescismic records, the event sequence

begins with a small (Mw -6) preshock, followed 16 s later by the mainshock.

However, low-pass filtered version of the vertical-component, low-noise
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records display precursory ramps with the same polarity as the mainshock P-
wave. This feature is most obvious for TAM, the closest low-noise station,
where the ramp begins at least 80 s before the preshocks'shigh-frequency P-
wave arrival time. Stations at greater distances have lower signal to noise
ratios, but a stack of the six best records yields a ramp with a duration and
amplitude similar to the precursor seen at TAM (Figure 1). Network-averaged
amplitude and phase-delay spectra in the frequency range 1-50 mHz have
been inverted for the source time function (STF) using the procedures of
lhml6 et al. (1993). The amplitude spectra show a break around 8 mHz, below

which the amplitude increases sharply, similar to many events reported by

Ihml6 et al (1993) and indicative of a compound source. An adequate fit to the

spectral data cannot be obtaincd without moment release prior to the

preshock's high-frequency origin time. The best models are characterized by

a smooth, precursory ramp with a duration of 80-100 s, followed by a moment

rate peak associated with the preshock and a much larger mainshock peak.

The spectral data are thus consistent with the time domain observations. We

invert both the time-domain stack and network-averaged spectra to obtain an

STF (figure 2). We find that the precursory ramp is part of a slow event whose

total moment is 35% of the mainshock moment.

The Romanche transform is also an ideal plate boundary for studying the

accommodation of scismic deficit by slow slip. Five events with moments

greater than 1 x 1026 dyne-cm have occurred on the Romanche transform

fault since 1980. The low-frcquency spectra of all five events show the type of

slope break we interpret as resulting from a compound event. In each case,

the slow portion of the event accounts for 30-50% of the total moment released

by the earthquake. Hence, on this transform, some significant portion of the

total slip is accommodated by slow smooth faulting.

The paper on the Romanche event's slow precursor is in press in Science

(attached).

McGuire, J. J., lhmld, P. F., and Jordan, T. H., Time-Domain Observations of a Slow

Precursor to the 1994 Romanche Transform Earthquake, Science (in press) 1996.

We have also presented the work on the 1994 Romanche event at the 1996 IRIS

workshop, and we have submitted an abstract on the Romanche event for the
1996 fall AGU meeting. The Romanche event points out the difficulty of

observing slow precursors in the time-domain. Despite the large total moment

of the event, the precursory signals are barely above the noise level. We are

conducting a survey of all events from 1995 to present to identify other slow

precursor events in the time domain using nearby low-noise stations.
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Fig 1. Upper traces are vertical-component P waves for the 1994 Romanche Transform
earthquake for the six lowest noise stations. These were the only stations for which the
first swing of the main shock P wave was greater than a factor of three above the noise
level. All seismograms have been detided, low-pass filtered (4-pole Butterworth with a
corner at 6 mHz), corrected for the group delay of the filter, detrended, and corrected for

the radiation pattern (flipped polarity if dilitational and normalized to a common amplitude).
Lower traces are a stack of these six seismograms (heavy line) and a similar, six station

stack for the large (M 7.0) Mendocino earthquake of 1 September 1994 (light line). In
both cases, zero time corresponds to the high frequency arrival time (labelled HF). The
Romanche Transform earthquake shows a precursory ramp beginning at or before -90 s

(labelled LF), whereas the Mendocino earthquake does not. The delay in the arrival time
of the high-amplitude P wave for the Romanche Transform earthquake corresponds

approximately to the 16-2 delay between the high frequency origin time and the onset
of the main pulse of moment release.
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Time-Domain Observations of a Slow Precursor to

the 1994 Romanche Transform Earthquake

Jeffrey J. McGuire', Pierre F. Ihmle, Thomas H. Jordan

Low-frequency spectral anomalies nave indicated that some large earthquakes are

preceded by extended episodes of smooth moment release, but the reality of these

stow precursors has been debated because they have not been directly observed In

the time domain. High-gain seismograms from the 14 March 1994 Romanche

Transform event (Mw 7.0) show a precursory ramp with a moment ot 7 x 1018 Newton-

meters beginning about 100 seconds betore the arrival of the high-frequency P

waves. This precursor was the initial phase of a slow component of slip that released

nearly half of the total moment of the earthquake. Such behavior may be typical for

large earthquakes on the oceanic ridge-transform system.

iii

Since :he eariv work of Kanamon and C[par _1[I on the _eat [960 Chilean earthquake, eoisodes

of _iow. smooth moment :eiease :_a,_e oeen postumted :o precede and initiate some _ge

_., _- New zecnn:cues have recer,:i', been deveiooed :or the detection and anaivs*s of slow•I.I-LrlGu3_K,..5. .

:recursors using '.ow-frequency seismic spectra t2.2). Their appiicauon to a catalog of large

s,o orecursors are rare in conunents and conver_,ence zones but aopear toevents has reveaied chat _ w - •

be common features of earthquakes on the oceanic ridge-transform system I4). For example,

[hml6 er al. (3) found that the _eat Macquarie Ridge earthquake of 23 May 1989, which had a

Jeffrey J. McGuire and Thomas H. Jordan. Department of Earth, Atmospheric and Planetary, Sciences, Massachusems

insutute ot Technology. Cambridge, MA i)2139, USA.

Pierre F. :hmie, [nsutut de Physique du Globe..z, Place Jussieu, Paris Cedex 75252. France.

" To whom correspondence should be addressed.
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moment-magnitude !,_/'_v_ of 8.2, was preceded bv a slow precursor with a moment re!ease of

about 3× l0 :° New,on-meters cN-ml, equivalent to a M,,v7.6 event. However, no precursor

was evident on high-gain, broadband seismograms in the interval immediately before the high-

frequency P-wave arrival times (3). This observation has led some to reject the slow-precursor

hypothesis {5).

The detection of slow precursors as time-domain signals at teleseismic distances is difficult

because the ambient level of seismic noise rises rapidly at frequencies below about 3 millihertz

_mHz] I6). Here we report the detection of such signals for the 1_ .",larch 1.994 earthquake on the

Romanche transform fauit in the cenuai Atlantic ocean iFig. l'. This large earthquake l _,Lv 7.0)

,:omprised at least two ordinar/ ruptures, a small preshock elevent A in Fig. 2) followed

approximately 16 s later by the mainshock Ievent B). At the lowest noise station, Tamanrasset,

Algeha (TAM), a low-passed version of the P wave shows a distinct ramp in front of the

mainshock (Fig. 2). The amplitude of the ramp exceeded the noise lever for at ]east 100 s before

:he high-frequenc'/ , A) '_r:_.vai time, ant :}',ere is some suggestion that its beginning may have

preceded A bv as much as 300 s.

.Although T.*M shows the precursor most clearly, the signal is visible at ali other stations

_, ". :>,an a factor of zhree'.vnere the firs: s,aine o: the iow-oassec, ma:nshocs: P wave was _.e_ter

.move the norse !evei !Fie. ;, On each of rue six records that sausfv this criterion. :he mainsnock
w

P wave ,,,,'as preceded by a ramp of :he same polarity, and in oil six the ramp has a consistent

:e!ative slope and duration. Because the low-noise stations cover aii four quadrants of the focal

sphere and sample epicentral distances ranging from 280 to 73 °, these observations confirm that

the ramp is a source signai with a radiation pattern similar to the mainshock rather than a

propagation effect. Given the coherency of the six low-passed records, we stacked them toobtain

a composite waveform i lower part of Fig. 55. '&'hen corrected for the goup delay of the low-pass

fi]ter, the precursory, ramp can be seen at least 90 s before the event-A arnval time. As iiiustrated

in Fig. 3, a sirmiar stack of another smke-siip earthquake yie!ded no such precursor.

\lcGuire, Ihmle, and Jordan .fc:ence MS#963127, revisect 8/5;96 Page 2



TheA and B subevents have an unusual space-time relationship that also suggests precursory,

moment release. We picked the ?-wave times of the two subevents on all records with ciear

amvals Fig. a) tg), :ocated them re!ative to the backgound seismicity (I0), and atigned the

seismicity with the Ai:rica-South America piate boundary.' on a high-resoiunon map of the aitimetric

_avity field (Fig. 5"1. We found that the two subevents were separated by 83 -'- 15 km and 16.7 *

i.0 s. -Fnerefore, a modet of the rapture initiating at A and propagating direc::y to B requires a

rupture velocity of 5.0 * t.0 krn/s, which exceeds the shear-wave speed in the upper oceanic

!ithospnere and thus the typical rupture velocity of shallow-focus earthquakes (7.3). Moreover, the

A, and B locations lie along an azimuth of N.?/+8°E, which is at a significant angle to the strikes

of the inferred fault planes for both subevents iFig. 5_. These data suggest that the two events

occurred on separate fault planes and were initiated by a common precursor.

The [ocation of event A, :he small preshock (.Ww - 6", is consistent with it being on the

primary active trace of the Romanche transform fauit, but event B, the mainshock, is located

_ignl:lcantiy north or this feature, in a vaiiev with a n-end nearly parailel to the transform fault I IS').

The directivity inr"erred from the az:muthal variation of the P waveforms indicates that the

mainshock propagated to the east. No aP,ershocks were :eteseismically recorded, so we could not

_ ._a,,c:ar,_ scaling :e!ations would imply that it ,,,,'as 50 :o TO kmdetermine :is rupture :enetn. but " _

:2 i. This approximates me [engm of a se:sm:c gap just south of :he mainshock, wnere :he railer

of the main fault ::race is interupted by a iarge bathymetric high 175).

It is not possibie to locate the slow precursor relative to the mainshock, 'out moment-tensor

inversions exclude the possibility that the precursor occurred on a fault connecting the A and B

events Ii2_. One scenario consistent with the available data (among, many) is that smooth slip at

depth in the normally aselsmic region redistributed stress in the region and triggered seismicity in

both the westernmost portion or the Romanche _A event)and the neighboring fauit vailev to the

nor"_ of the seismic gap : B event).

We also investigateci the 1994 Romanche Transform earthquake using the specn-ai synthesis

and inversion methods applied in previous studies of slow earthquakes t2-4). We estimated the

\IcGuire. Ihmi& and Jordan Science MS#963127, :e,,'isea 8/5f96 Pa_e 3



amplitudei totai-momentl spectramMTt col and phase deiay (time-shift) spectrum ,3_I oo) of the

source at 1-.mHz intervals from [ to 50 rpd-iz using a combination of body waves, sunace waves,

and free osciilations fFig. o). The different wave types yielded consistent results throughout their

regions of overlap. The phase-delay st_ect:um is nearly constant across the entire frequency band,

but the amplitude spectrum shows a sharp break at about I0 m.Hz. This pattern is similar to that

observed for other slow earthquakes by Jordan (2) and Ihmid and Jordan (4), which they

interpreted as compound sources. According to this hypothesis, the amplitude break results from

the supemosition of an ordinary, fast rupture, which dominates the spectrum at high frequencies,

and a smooth transient of !onger duration, which dominates at low frequencies. The lack of a

corresponding break in the phase-de!ay scectrum requires that the cenuoid times of the two events

_e nearly equal, thus impiing that the siower event beNns f_rst.

To quantify these statements, we peNormed a joint inversion of the spectra and the P-wave

_tack for the source time function (Fig. 6i. The results show an event sequence that comprises a

slow eard_cuai<e beginning _[0 s before the high-frequency origin time l: = 01 and continuing for

about !.5<0 s. a preshock initiating at 0 s, and a 29-s pulse of high moment retease beginning at

!6 s. This compound-event mode[ f:.ts :he ampiitude and abase-delay data across the entire

,_n_e. as weki as tr, e precursor beset-red [n :he ,_vaveform stack. V,,"e ?.iso inverted the:reauencv "'_ e

..... t iata ,_',one. _.i',o'_in_ ?,o moment release a: : < 0. but founci that we could ,not,,e,.,,a.

. a, _ ue,"]C,,..S.simultaneously satisfy the iarge amplitudes and fiat phase-ce!avs at [ow ;--" a_ Hence. the

,.mstenc,, of the slow _recursor seen in the P-wave stack.,mectrai data confkm the -_ °

The c)est-fitting source time function has a total static /zero-frequency) moment of 5.g × [0 t9

N-re. Companng its ampiitude spec:um to one from a source time funcuon confined to the

:.nterval 0 < " < a0 s tFig. 6_ indicates that the static moment released by the slow component is

about 1.3 :< [0 19 Nm. or 43% of the total. About 0.7 x 1019 Nm t "t3%] is released in the slow

precursor.

Since slow ea.rthquaxes occur most frequently along oceanic transform faults, ihmie and

]ordan 14) proposed that the intrinsic stratification of oceanic lithosphere may be responsible for

MeG uu'e. ihmie, an(1Jordan Jc.ence MS#963127. t-evised 8t5t96 Page J.



_heircompound-eventcharacter. According to this hypothesis,fast ruptures in the shallow

_;eismo_eniczone are initiated bv the loading,due to slowereoisodesor silo in the subjacent,

serpenunizeduppermantle. The superposiuonof a fasteventin themiddle of a slow event,as

seenin thesourcetime funcuonof Fig.6, is mosteasiiyexolainedbv thisdepthreiationship.

"Fnedatapresentedhereindicatethattheslow precursorof theRomancheearthquake_ew for

at least100sbeforeit mggereda fastrupture,andthetotalmomentreleasedduring theentireslow

eventwascomparableto thatof themainshock.This behaviorappearsto becommononoceanic

transform faults I4), but it is in markedconstrastto the nucleationphasesobservedfor other

earthquakes,whicharesmallandacceleratequickly into inertia-dominatedinstabilities(18). The

shapeof the waveformstackandthe absenceof anyobservablehigh-frequencyenergyprior to

eventA indicatethattheprecursorsmomentrateincreasedsmoomlyata nearlylinearrate,which

imnliesthattheproductof theruptureandparticlevelocitiesduringslowphaseof slippagemustbe

at [east two orders of magnitude smaller than that during the mainshock I19"_. Hence, the

designation'slow precurser'is truly warrantecl.

REFERENCES AND NOTES

, ,,. ,__ .... -,, _ee also [. T <.xuentes. H. Kanamon and J. Char. a,z,'_. Earm P!aaer. lurer. 9, _"v , _- ,, _. _ "

ane. P. G. Sii,,er. ,: 5eoohvs. Reg. 94, 043 _ 1989"_.

2. T.H. Jordan, Ge,,?Va>'s. Rex. Left. 18, 20!9 _1991).

r , '3. P.F. [hmld. P. Haraoagha, T. H. Jordan, Science 261. 177 I ].99_5.

4. P.F. Ihmte and T. H. Jordan, Scie,_ce 266, t5a.7 _:_,99a5.

'7 " 199,S_ found
5. S. Kedar, S. Watada, and T. Tanimoto, ]. GeopiUs. Res. 99, !, 89.,, _

significant amplitude and phase anomalies for certain low-frequency spheroidal modes that

could be exolained bv a slow precursor to the Macquarie Ridge earthquake [see also J. Park.

Geophys. Res. Lem 17. 1005 (I990)], but they rejected this possibility because no precursor

was evident as time-domain signals preceding the P waves at high-gain seismic stations. Such
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signalswouldbebelowthenoiselevei if thetimefunctionof theprecursorweresmoothanti

of sufficientlylongdurationI3).

6. D. Agnew and ]. Berber, ]. Oeopny's. Res. 83, 5a!0 I!978); G. C. Beroza and T. H.

Jordan, ibid. 95, 2a85 _.i990].

7. The hypocenter location ziven by the National Earthquake Information Center is

94:03:1&04:30:07.7 UT, 1.08°S, 23.9 °W, h = 10 kin, and the Harvard cenn-oid location [A,

M. Dziewonski, G. Ekstr6m, M. P. Salganik, Phys. Earth. Planer. Inter. 86, 253 (1994]] is

94:03:14:04:30:33. i UT. 0.88°S, 23 .0°W, h = 15 kin.

8. The Harvard centroid location [A. M. Dziewonski, G. Ekstr6m, 5I. P. Salganik, Phys. Earth.

Planet. Inter. 90, t (1995")] for this right lateral Mw 7.0 event is 94:09:01:15:16:00.6 UT,

40.59" N, 125.78" W. h = 15kin.

9. We picked 10 arnvals for event A and 11 for event B, obtaining at least two B-A differential

:ravel times in each azimuthal quadrant. These differential times are listed with the station

azimuths and epicentra distances in the following table:

Sration -Xz,a-nuth Distance B-A Time

_'deg) :deg) _s;

ECH --

SSB 25 53 , _.3

T,-L.M 48 37 _0.8

LBTB [21 53 18.4

BOSA 125 54 _a.5

BDFB 238 28 21.7

LPAZ 249 -!.6 2 4.1

SJG 297 46 I8.8

,-MN_IO }05 $ § l 4.,.5
CCM _ l0 73 t 6.8

_0. Relocations were performed using the clustered-event aigohthm of T. H. Jordan and K. A.

Sverdrup, BuIl. Seismol. 5oc. ,4m. T1, _t05 (1981), which yields relative locations that are

p>,e 6
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independentof commonpathanomalies.WereiocatedtheA andB subeventstogetherwith all

eventshaving3(]or moreP-wave _rival times in the [SC cataiog from !,96-4-1987 and in the

PDE catalog from 1`990-1995. ,All event depths were fixed at 10 kin. The hypocentroid of

_his seismicity cluster has been shifted <2 km in the ciirection N30 °E to align the seismicity

with the plate boundmms observed in the _avity field. Although the arrival time data for the

two-year period 19_8-[989 were unavailable, the PDE catalog shows no events in the

aseismic region between 22.3 °w and 23.3°W.

L i. D. Sandwell, F_.os 76. la9 (1995"_.

12. The moment tensor ,,,,'as determined in 1-mHz bands from 1 to l l mt-'Iz using the free-

oscillation inversion method described in M. A. Riedeset, T. H. Jordan, A. F. Sheehan, and

P. G. Silver, Geophys. Res. Left. 13, 609 (1`986"J, no significant frequency dependence of

the source mechanism was observed, implying that the slow component of the 199a

Romanche Transform earvhquake had a radiation pattern similar to the mainshock. The

mechanism _abeiled LF in Fig. 5 is the average across _he frequency band 3-6 mHz. The

source mechanisms of the A and B subevents, also ShOWn in Fig. 5, were determined by

waveform analysis. The',,' are similar, but not identicat for example, their long-period P-

wave poianties are reversed at Nafia. Pe:-u iNNA_.

;. '&'hiIe ,,-uoture veioc:ties of shaltow-_ocus eaa-tnqua_es ,nave been known _o exceed zne locai

shear-wave speed jR. Archuieta, J. GeopiUs. Res. 89. 4.559 ,i _98431, the,,' are rare. Typicat

rapture velocities of shaL1`ow-focus earvhquakes are less than 3.5 krrVs 114',.

_-_. C. H. Scholz, Tile 34ecflanics o/ EarrflquaJee Faz6ring, Cambridge University Press,

Cambridge, 1,990, .-1,39pp.

,5. E. Bonatti, M. Ligi, L, Gasperini, A Peyve, Y. Raznitsin, Y. J. Chen, Y. Oeopflys. Res. 99,

21779 {199aj: R. C. Searie, M. V. Thomas, E. J. W. Jones..Vlar. Geopkys. Res. 16, a27

11994_. The morphology of the western poruon of the Romanche Transform is exn-emeiy

complex, exhibiting multiple pa,eotrans,orrn railers that ,,-esulted from past changes in plate

motions. The seismic gap on the main transform trace between 22.3 °W and 23.3 °W 1Fig. a'_

Page ,
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correspondsto a0athymen-ichigh,whichSearieet cat. attribute to transpression caused by the

northeastward bending of the fault mace at the western end of the gap. Locking of the main

trace in this reDon could explain the offset of the event-B rupture to the north.

'_6 The spectral, estimates in Fig. ,4 were obtained using the procedures described in {2-a'_.

Measurements of soherold, al free oscillations were made from vertical-component

seismograms in the '_-i9 mHz band using the methods of P. G. Sliver and T. H. Jordan,

Geoph,/s. ]. R..4srro,z. 5oc. 70, 755 (1982), and M. A. Riedesel and T. H. Jordan, Bull.

5eisrnoi. 5oc. Am. 79. 85 { I989). Nleasurements of first-orbit Rayteigh waves (i-10 mHz)

and long-period body wavetrains ¢_0-50 mHz') were obtained from vertical-component

seismograms by the methods of Ihmtd et ai. _2). [n aii cases, synthetic seismogams were

used to account for radiation-pattern and propagation effects. The synthetics were computed

by mode summation from the Harvard CMT (_ and the de,be-12 asphencal earth structure of

W.-J.. Su. R. k. Woodward, and A. M. Dziewonski, J. Geophys. Reg. 99, 6945, (199,-t).

Fundamental modes above 7 mHz ',,,ere atso objected for smaller-scale heterogeneity using

the degree-36 ohase-ve{ocity maps of G. EkstrtSm, ]. Tromp, and E. W. karson, Eos 74, -1.38

, I9933.

i , ,-,_,_ uadrat;c erosrammins ai:_ozthm of Ihmie e_ ..::. c..,";,which_<e data were .n,,e .... ,:sin', :he c - "

• ' ,,,e,b_,r,. or data misI]t and a duaaratic form
minimizes a iinear comotnation ot a .:m-s<uare _ """ °

measunng the smoothness or the source time funcuon, subject to the constraint that me source

time function be nonnegative. The smoothing vaned from high values prior to the event-A

origin time {110 < : < 0 s). which insured that the precursor did not generate significant high-

frequency amvats. :o !ow values dunng the mainshock phase of the rupture f 16 < ._< t5 s),

when the high-frequency amothudes were largest: intermediate values of smoothing were

assumed between ',he inination of event ,-', and the initiation of event B (0 <_: < 16 s) and in the

[ntervai after _he mainsnock {-Z'0<__: < 200 s).

W. L. Ellsworth and G. C. Beroza, Science 268.85 i __995"1, have shown that the nucleation

phases for typical earthquakes release about 0.5% or the total static moment M 0 and that the
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i9.

20.

_"-_Thesesca[in_,-e[ationshiDyield a nucieationphasedurationof nucleationvaneszts._,l0 . _ • .

with a moment ef about 1.5 < [0 I7 >;m and a duration or abeut ! s for an earthqu'ake the size

of the [99a Romanche Tmnsferm mainsnock.

For a rectanguiar fauit of deotn D _iipping at a constant p_ucte velocity Jz_ anci grov<ng

unilaterally at arunture vdocit)' v_. :he moment rate will increase at a rate 5.1 : 2_ Dv, A_,

where # is the shear modulus. The observed moment acceleration for the slow precursor of

the Romanche Transform ear-_hquake is about 1.8 × 10 t7 N nu's2. For D = 10 km and _ =

× 10 l° Pa, we obtain v,__l = _ m:/s:. Hence. if v_ = 100 m/s, _la = 0.03 m/s. In

contrast, the obser-vanons for ordinary earthquakes, including the mainshock of this event

_Fl__. 5/, vietd v, __L_> !000 m:/s:.
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Figure Captions

Fig. 1, MaD showing the Harvard Centroiq Moment Tensor {CMT'i location and mechanism ot the 14

March 1994 Romanche Transform earthquake __ Triangles are the !ocations ol the six seismic stations

used in the P-wave stack: these stations samc_e all four quadrants and lie away from nodes in the radiation

pattern.

Fig, 2. Vertical-component records of the P wave from the 1994 Romanche Transform earthquake at the

nigh-pedormance seismic station TAM. Top panel contains the raw broadband trace at two magnifications

(both labeled BHZ) and a derided, Low-pass filtered version of the same seismogram (labeted LOW/,

revealing the precursory ramp beginning at least 1 rain beiore the high-frequency arrival time (t = 0_. The

iow-pass filter is a 4-pole ButteP,'_orth w_tn a 6-mHz corner. Vertical scales are digital units oi the

seismogram (counts}. Arrows are the arrival-time picks for subevents A and B, with zero time set to be the

high-frequency (event-A) arrival time. A comparison of the lower two traces, which nave the same

magnification, snows tnat the amplitude cf :he _ign-lrequency noise is substantially larger than that of the

low-frequency precursor, masking tr_e latter cnthe uniiitered record. The lower panettsthe same tow-

passed record at a longer time scale, with dasned lines approximating noise level The two low-passed

records have not been corrected for the greuo delay ol the filter, which is I 0 s.

Fig. 3. ,..:cuer traces are vert_ca;-ccmccnent P ,,_aves for the 1994 Romanche Transform esrthcuake for

:nesax, low-notse stations shown_n Fig. " These weretneonlystationswneretnefirstsw_ng°fthe main

shock Pwave was greater than a factor of three above the noise level. All seismograms have been

derided, tow-pass filtered (4-0die Butter'worth with a corner at 6 mHz), corrected ior the group delay of the

filter, detrended, and corrected for radiation pattern (llipped in polarity if ditatational and normalized to a

common amplitude}. Lower traces are a stack of these six seismograms (heavy line) and a similar, six-

station stack for the large (Mw7 0) Mendccino earthquake of 01 SeptemBer 1994 (8) (light fine). In both

cases, zero lime corresponds to the iqign-irequency arrival time (labelled HF). The Romancne Transform

earthquake shows a precursory, ramlD beginning at or before -90 s llabelled LF), whereas the Mendocino

earthquake does not. The delay in the arrival time of the hign-amDliluce P wave for the Romanche

?age i0
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_ransiorm earthquake corresuoncs aoprox_matety to the 16-s delay oetween event A, which is the first

nigh-frequency arrival, and event B. WhiCh is the mainsnock.

Fig. 4. Vertical-comt:x:)nent, P'waves recorded at four stations, showing the arrival-time picks for event_A

on nigh-pass filtered seismograms (lower traces} and event B on unfiltered, broadband seismograms

upper traces). Each trace runs from 20 s before to 30 s after the event-A arrival. The high-pass fiiter is a 4-

pole Butterworth with a 1-Hz corner. 0 is the station azimuth. Stations to the northeast (e.g., TAM) have

smaller B-A time differences than stations to the southwest (e.g., LPAZI, indicating that event B is

northeast ot event A (9).

Fig 5. Map of the western _art of the Romancne transiormfauit, showing the relocated earthquakes,

siotted as points with 95_/o confidence ellipses li0), and the aitimetric gravity field, plotted in color (I 1).

Beachball insets are the low-frequency source mechanism (LF) and subevent mechanisms (A and B) for

the 1994 Romanche Transform earthquake i_2). Large dots are the epicentersoitheAandB subevents

and the Harvard CMT epicenlroid, and tr_e arrow emanating from B snows the direction and approximate

length ot the main rupture. The gravity anomalies range from-15 milligals (blue} to -,-15 miiligals (red}, anq

:he retiel is illuminated lrom the northwest.

Fig. 6. ::A) Amclituce and ;Bt 3hase-deiay !_ectra for the 199a Rcmanche Transform earthquake.

_olntS are estimates with one-sigma errcr sars obtained from Dropagation-ccrrected spectra. :_.verageo

over a global network of 32 broacband stations :16): Nave types used in the measurements are

spheroidal free oscillations (solid circles), Rayleign waves (open squares), and long-period body

wavetrains (solid triangles). Sotid and dashed lines are the spectra obtained by Fourier transforming the

source time functions in panel D. The phase-delay spectrum is referenced to the NEIC high-frequency

srigin time (7), which corresponds to the initiation of event A. (C) Comparison oi the observed P-wave

stack, from Fig. 3 (open circles) with synthetic seismograms Isofid and dashed lines} computed from the

source time functions in panel D. (D) Solid line _s the source time function obtained by the ioint inversion

ct the spectral-domain data Lnpanels A and B and time-domain data in panel C (: 7"). Dashed iine is from

Page I 1
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:he inversion ol iust the spectral data _n the 10-50 mHz band. where the time funGion was restncted to be

zero for time less tt_an 0 s and greater than 45 s.

5,1cGuire, ihmle, and Jor_q .Science MS,,96._ 1_ ,. re.visecl 8/5196
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